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An Integral Method for Calculating Heat and Mass Transfer in
Laminar Boundary Layers

F. E. C. CuLick*
Massachusetts Institute of Technology, Cambridge, Mass.

An integral method previously used successfully in several kinds of boundary layer problems
has been extended to treat simultaneous heat and mass transfer in a binary-mixture laminar
boundary layer when the pressure is uniform. * The prineipal results are two pairs of dual in-
tegral relations arising from solutions to the integral concentration and energy equations.
One pair connects the surface mass transfer rate and surface concentration of injected gas; the
other relates surface temperature and heat traiisfer rate in the presence of mass transfer.
Only the cases of helium and air injection into an undissociated air stream are discussed in
detail, but the method can be applied to problems involving other gases. The approximate
results agree quite well with some numerical solutions and with recent experimental results

for which no numeriecal solutions are available.

Introduction

ASS-transfer cooling is one possible method of reducing
the heat flow to surfaces immersed in high-energy gase-
ous streams. In practice, only part of the surface will be
cooled directly in this manner; a gas, perhaps different from
the freestream gas, then is injected through a porous region
near the leading edge. An important problem is deter-
mination of the extent to which the surface downstream of
the injection region is cooled. For a realistic description of
the problem, one therefore should consider a binary-mixture
boundary layer with nonuniform heat flow, mass transfer
rate, temperature, and pressure at the surface. - Fortunately,
useful results still are obtained, for a flat plate and a cone
in supersonic flow, if the last condition is relaxed. The sub-
jeet treated here is an approximate integral method for com-
puting relationships between the first three quantities when
the pressure is uniform; a fourth important variable, the
wall concentration of injected gas, also will appear.

The equations governing laminar boundary layer flows can
be solved “exactly” only for special, although useful, condi-
tions. These results are usually similarity solutions; the
appropriate partial differential equations are reduced to non-
linear ordinary differential equations, which then are solved
numerically. In such cases, the surface boundary conditions
and freestream variations are restricted to specific forms.
Relevant examples of this sort of analysis are given in Refs.
1 and 2 for helium injected through isothermal flat surfaces
(flat plate and “wedge’ solutions). To meet the similarity
conditions, the surface mass transfer rate must vary inversely
with some power of distance from the leading edge. Cor-
responding results for the case of air injected through a flat
plate in an air stream have been presented in Refs. 1 and 3.

More recently, some results*™® have been obtained for
“nonsimilar” problems associated with other boundary
conditions. Although these are accurately known solutions,
an obvious disadvantage is that, even if the same gases are
considered, separate and generally lengthly calculations must
be carried out for each new problem, i.e., whenever the form
of the boundary conditions is altered. It clearlyisdesirable
to construct approximate methods, preferably based on
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available numerical solutions, to handle the kinds of boundary
conditions encountered in practical situations.

Similar circumstances of course have arisen previously in
the development of laminar boundary layer theory. Ap-
proximate methods based on von Kdrmén’s integral momen-
tum equation first were developed for low speed, constant
property boundary layer flows over curved surfaces. Al-
though for many years the usual approach, first used by
Pohlhausen, was to approximate the boundary layer ve-
locity profile (e.g., by a polynomial of some kind), the most
efficient calculation seems to be Thwaites’ method,” which,
although, still based on von Kdrm#dn’s equation, makes ex-
plicit use of the exact solutions. One then can calculate the
boundary layer momentum thickness with a minimum of
effort and with good results, especially for favorable pressure
gradients. Although identical results may be obtained by a
method due to Eckert? and by several other approaches
(see Ref. 9 for a brief survey), the viewpoint taken by
Thwaites is distinctly different. Many of the investigations
carried out for low speed flow have been extended with vary-
ing success to compressible flow.

The development of integral methods to compute heat
transfer rates for variable wall temperatures and pressure
has been similar to that of methods relating to the momen-
tum boundary layer. Approximations to the various pro-
files, following Polhausen’s early ideas, have been attempted
for both compressible®—*? and incompressible flow. An im-
portant comparison of several other integral methods has
been carried out by Hill*® for the constant property flow
problem resulting from application of the transformation
due to Stewartson® and Ilingworth.” Most significant to
the work here is a method, developed by Hill,3—% based on
an approximate analysis, by Rott and Crabtree,? of the
boundary layer on & yawed cylinder. In spirit, these studies
are similar to Thwaites’ work, since known solutions are used
explicitly. Furthermore, the momentum thickness, found
most easily from Thwaites’ formula, is involved in calcula-
tions of other quantities; for example, the heat transfer to a
variable temperature curved surface is related to the momen-
tum thickness by Hill’s solution of the energy equation.

There are several investigations®—22 dealing with a prob-
lem related to that studied here. They treat approximate
solutions to the equation describing the concentration of a
species in a chemically active flow reacting with a surface;
heat transfer has not been treated extensively by them.
The results rely in large measure on analogous treatments,
such as Lighthill’s analysis?® of heat transfer in incompressible
flow; it will be seen that such analogies are not strictly valid



784 F. E. C. CULICK

Fig. 1 Variation of pro-
portionality constant C
with surface temperature

[ | ]

Ty/Te

when there is surface mass transfer. It appears that the
procedure discussed below may be applicable, after suitable
modification, to the problem of reacting surfaces. Although
some work has been done 24 % on approximate methods for
the problem of air injection into an air boundary layer, the
accuracy of these results seems in doubt, and the analyses
are restricted to rather special cases. So far as the author
is aware, except for a discussion in Ref. 1, Covert’s work? is
the only approximate treatment of the binary mixture bound-
ary layer with helium injection; subsequent calculations*
support his conclusion that his results, which are quite diffi-
cult to apply, are accurate only for low mass transfer rates.

There is therefore a need for approximate methods taking
account of mass transfer through the boundary surface.
Certainly the obvious approach is to attempt some extension
of existing analyses. Of the integral methods used for prob-
lems not involving mass transfer, there appear to be two
general classes: one comprises those investigations in which
the various boundary layer profiles, appearing in integrals
over the layer, are approximated in some manner, and the
other includes studies in which the integrals are used directly
as dependent variables, following Thwaites’ work. Owing in
part to the characteristic that they make full use of the nu-
merical (similarity) solutions, the second class of methods
seems to give more accurate results and is applied more
easily. Consequently, the present work follows a course
similar to that traced by Thwaites and Hill. It will become
apparent later that the problem treated here is (roughly)
analogous to the problem of heat transfer to an impermeable
surface with variable temperature and freestream pressure.
Since the numerical results readily are available, the results
obtained are for air or helium injection into an undissociated
air stream. Kvidently, the method should apply equally
well to problems involving other gases. It should be noted
that the discussion is for flat plate flow, but, by applying
Mangler’s transformation, one can use the formulas for flow
past-a cone in supersonic flow.

The results cited contain several important ideas that will
be used in the mass transfer problem. The task of repre-
senting profiles in a binary mixture boundary layer becomes
monumental, since the concentration of species is an added
variable; such a procedure also ignores the existence of
numerical solutions except as a means to check. Itis clearly
advisable to'avoid such approximations by using the various
thicknesses, such as the momentum thickness # and convec-
tion thickness 0., as dependent variables. Thus one must
use numerical solutions for special boundary conditions to
evaluate certain functions that then #re assumed to remain
unchanged when other boundary conditions apply. In
eﬂ’ect the assertion is that, approximately, there are certain

umversal” properties of the boundary layer flow; the prob-
lem is to extract this information from known results and in
such a form as to be more generally useful. Particularly,
the method of Rott and Crabtree enables one to determine
approximately the connection between an integral thickness
such as 8, and the right-hand side of the associated first-order
equation. This gives a way to generalize special solutions,
and thus one can analyze problems involving rather difficult
boundary conditions. Involved in this scheme are certain
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assumptions that can be justified only by comparing the
final results with numerical solutions or with measurements.
Somewhat more extensive accounts of the work covered here
may be found in Refs. 27 and 28.

Momentum Thickness with Surface Mass
Transfer

Eventually both the integral concentration and energy
equations will be solved, but the first step is to construct a
formula for the momentum thickness. The viewpoint from
which :the following calculation proceeds is like that of
Thwaites. The differential momentum equation has the
usual form; for uniform pressure, the equation for the mo-
mentum thickness is

dg 1 ou (p0) w
de  pau? <” 3y>w t o W
and in compressible flows
= pU w
= =) d 9
6 o i, < u) dy 2)
Equation (1) may be written in normalized form:
pells 462 e | 8 (Ou 0(ov)
=2
Cu. dz Cue [ <ay> + How ®

where C is the Chapman-Rubesin constant appearing in the
analysis of binary mixture flows? through the relation

o/ pepe = CA 4

When the surface temperature varies, C' depends on z, al-
though an average value may be sufficiently accurate for
some purposes; C is computed in such a way that the vis-
cosity coefficient evaluated at the wall obeys Sutherland’s
formula appropriately modified to allow for variable con-
centration (see Ref. 1). The dependence on concentration is
contained in A, whereas C is a function of T,/7T, shown in
Fig.1..

It is not unreasonable to assume that the velocity profiles,
and hence 0, belong to a one-parameter family, similar to a
postulate 1nv0ked7 when (pt), = 0, dp/dx > 0. Since, in
practical cases, (pv), almost certainly will be preseribed, it is
desirable to relate the right-hand side of Fiq. (4) to a dimen-
sionless form of this quantity. The natural choice, f,, arises
in the analysis of Ref. 1:

fw = ——2(R,/C) 1/2[(Pv)w/l~7eue] (5>

The meaning of f will become apparent later; for the present,
it is sufficient to remark that f, is independent of z for the
similarity conditions and otherwise will be a function of z as
well as-the level of mass transfer rate. Thus the assumption
is that the right-hand side of Eq. (4) is always a function of
fwonly, and the expression for 8 is

a? o’
= T2d

o Jo A (6)
in which & = 0.664 and I'%, evaluated for the similarity in
conditions, is shown in Fig. 2. A good approximation to
T2 for helium injection is

I'? = 1 4+ 1.500f, + 1.875f.2 )

Although this approach may be adequate if (o2), is a rea-
sonably smooth distribution [there are no data to check
Eq. (6)], there is a difficulty if f,, vanishes on part of the sur-
face, for then there are cases in which one finds an incorrect
dependence for C; on z. Examination of several prob-
lems?. % shows that ¢1., should be used as the parameter C,
i.e., I'y (Fig. 3) is used in Eq. {6); the subscript on T'y denotes
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that it is to be regarded as a function of ¢.  On the other
hand, (pv), usually is given, and @ must be known to com-
pute ¢, from formulas deduced later. One therefore ap-
parently is forced to use f., as a basis for I'? in Eq. (6), at least
as a first approximation; C;/Cy then can be found from
Fig. 3. .

This ambiguity perhaps is inevitable in an attempt to ob-
tain relatively simple formulas for what is really quite a
complicated flow problem. There appears to be no a priori
justification, and in what follows 6 is to be obtained from
Eq. (6) by using the definition (5) of f, and Fig. 2. Fortu-
nately, as Fig. 2 shows, the momentum thickness is not par-
ticularly sensitive to surface mass transfer. The reason for
this can be seen by noting that peu.?6 is the difference in
momentum flux between the flow in the boundary layer and a
section of the external stream having the same mass flow.
This difference is increased by (pv). > 0 and decreased by the
associated reduction in wall shear stress; the two effects
thus tend to balance. In addition, it will be seen later that
the effect of any error in # is diminished further because the
influence of mass transfer on momentum thickness enters as
a cube root in the ¢;.~(p)w and ¢.~T relationships.

Relation between Surface Mass Transfer Rate
and Concentration

When chemical reactions are unimportant and thermal
diffusion is neglected, the equation governing the concentra-
tion of one of the species in a binary mixture boundary layer

is
601 acl . 0 M acl

pl:ubx +Uby]—by <Scby ®)
where Sc is the Schmidt number and ¢, will represent the con-
centration of the injected gas. Baron! has shown that ther-
mal diffusion has negligible influence on the solution for ¢;;
its effect on the temperature distribution will be treated
later. Associated with Eq. (8) is the boundary condition
on mass transfer rate:!

o (m
(e = = i — <Dy> ©)

Although it is attractive to regard the solution tc Eq. (8)
as simply a re-interpretation of the solution to the incom-
pressible heat transfer problem, with ¢, replaced by (pv).,
T, — T, by ¢, etc., there are two conspicuous obstacles:
0w is related linearly to Tw, qu = —xk(dT/0%)w, but (pv), is
connected with ¢, by a nonlinear relation, and (pv),, appears
explicitly in the integral momentum equation, whereas g,
does not. Consequently, any incompressible heat transfer
results applied without change to the problem defined by
Egs. (8) and (9) can be valid at best for low injection rates.
If the J-A method of Refs. 13-15 is applied to this prob-
lem, one should expect, even for dp/dx = 0, to obtain a
family of curves, for various f., say, corresponding to the
family obtained when f, = 0 but dp/dz > 0. In this sense,
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Fig. 3 Dependence of Ty and C;/Cj, on wall concentration
of helium for similarity solutions!

then, the problem of heat and mass transfer with zero pres-
sure gradient is similar to the problem of heat transfer with
variable pressure but no mass transfer through the surface.

The integral concentration equation, upon integrating Eq.
(8) over the boundary layer, results in

(d/dx>(peueclww) = (Pv)w (10)
@ = fo ° /% cch dy (11)

Corresponding to the thermal thickness 8 introduced by
Hill, a concentration thickness 8 is defined as

5 = ﬁm Lo gy (12)

Pw Clw

The ratio of densities p/p. appears because the present treat-
ment is for compressible flow. Then Eq. (10) can be re-
written for ¢y, constant, and, by incorperating the boundary
condition Eq. (9),

d 1 C:u'e
T (i) = o (e = G X

)\w 61 bcl
I:Scw(l — 1) Cro <— @)«J 13

The quantity in brackets corresponds to w/Pr in Ref. 14.
However, owing partly to the nonlinear boundary condition,
the combination is here a function of ¢, and hence f,, or
(pv)w, whereas w/Pr is independent of both 7, — T, and
dp/dz. Even the part (61/c1)(—c/dy), is not invariant
because the concentration profiles are not the same for all
fuw. Thus a departure from Hill’s analysis is required. De-
fine Ji, A; analogous to J, A used before:24

_o oy, He D
Ji = 7 A = Ch, ) (14)
and set
B Ao 6 o
(o) = Scu(l — C1w) Cio < by)w (15)

which is a known function of ¢;, from the solution of Ref. 1.
That is, the assumption is made that the solutions to the
concentration equation belong to a one-parameter family
identified by the wall concentration ¢,. The integral
equation is now

(d/da)(peucdSs) = Cuen/0A, (16)

Equation (16) now can be integrated in the same manner
as the energy equation in incompressible flow,'3~1% since ¢y, 1S
constant. It is necessary only to compute a family of Ji-A,;
curves in which each curve is identified by a value of cio
rather than [. To do so, the foregoing integrations over y
are changed to integrations over the modified Dorodnitzyn
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variable 7 used by Baron:

1 Rx /2 'p
dn = (ﬁ) (7) (z)dy ()

Hence J; and A; become

J = = -.fl(AhC]w)

All of the foregoing integrands are functions of 5 only for
the similarity solutions. It is clear that in the present prob-
lem J;(A,, ¢14) corresponds to J(A, I) in the constant property
heat transfer analysis. By varying A, curves of J; vs A
can be computed for each value of ¢.. Although construc-
tion of this family of curves requires numerical integration,
the special points (J s, Ais) corresponding to the similarity solu-
tions tabulated by Baron can be found without difficulty by
direct integration of the momentum and concentration
equations for 8 and w. For c¢1. fixed, the ¢i/¢;, profiles then
are scaled in the ratio A;/A;;s to cover the entire range of Ay,
while maintaining their shape and the velocity profiles in-
variant. Figure 4 shows these results.

Stepwise integration of Eq. (16) can be avoided by using
the approximation to the entire family:

Al = (lp]lm (18)

which is shown in Fig. 4 with a, = 2.46 [see Eq. (24)]. Thus
Eq. (16) yields

Sn 2/3 /J,, 2/3 1 z C 2/3
i = <%> (,,u) 0 [f i d””]

forJ, = 0atz = 0. When ¢, is constant, (pv), therefore is
given by

(pl))u _ C’u.’nCm _ l 1/3 e >2/3£ %
Pelle B GAI - 3(112 Pelle g12

z C —1/3
l: fo de] (eeam)?® (19)

This relation between ¢, and (pv),, is valid only for ¢;,, con-
stant and therefore is limited severely. Superposition is
strictly prevented by the dependence of 8 on ¢1.. However,
because 6 is affected only moderately by mass transfer,
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elementary solutions of the form (19) may be superposed
approximately to give a formula for (ov). when ¢, is vari-
able. The approximation is improved by splitting off
the part of 8 depending on ¢1», when ci, 1s constant, that is, by
dividing 8 by T:

. (pv)w B _2, 1/3 IR 2/3 C %
potte  \3a. petie)  (8/T)12

U; (‘a/TCo)xTz dx]_m g (20

Thus, to the extent that one may ignore the influence of
1w 00 8/Ty, (ov) 18 related linearly to g = ¢;,n23/T3.  One
also can show easily, by using the foregoing formula for J,,
that Eq. (10) is a linear relation between (pv), and g, pro-
vided that variations of 8/Ty with ¢, are neglected. Since
8/T, will not vary greatly when ¢, is not constant, changes
in # due to mass transfer will have indeed a weak influence
on the relationship between (pv). and ¢.. Hence, approxi-
mations in the solution for 8 from the momentum equation
when dp/dx = 0 have only a minor effect on the results ob-
tained from the concentration equation.

A vparticular distribution (pv),, therefore may be con-
structed by superposing increments in (pv)., due to incre-
ments in g, and for g variable in the range 0 < £ < z:

(e _ 1)(#_)_0__
Pelle B (3@12 Oelhe (0/P0)1/2 X
- z C —~1/3
{(g)x=0+ l:fo W d:z:,:l +
* z C —1/3 dg
LU g e] e e

Hence with g constant, and 6/T for the similarity conditions
given by

0/1‘0 = a<C,ue/PeUre) 1212 (22)
Eq. (22) eventually leads to
~fu = 4/ (23)

It happens that quite good agreement with the numerical
solutions is obtained if a, satisfies

a = (4/a)¥? = 2.46 (24)

Thus the function g(ci») reduces exactly to —f., when ¢, is
constant; comparison between g and the f,-¢1, relation com-
puted in Ref. 1 is shown in Fig. 5. This constitutes the
first check of the various assumptions introduced previously
and is favorable except for —f, greater than 0.5. It is to
be noted that the function g(ciw), the solid line in Fig. 5 and
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likewise computed from Ref. 1, is assumed to hold generally;
it reduces to —f, only when ¢, and f,, do not depend on .

Equation (20) can be solved for g (see Appendix), and the
solution to the integral concentration equation is represented
by the pair of integrals

(Pv)w KiC x z ~—0_ —1/3 @
pate  (6/To? f [L (6/Tg) dxl] a¢ 4 (29)

N sinm/3 z z C —2/3
o) ~ gla) = T2 (7 [ [ s dxl:l «

(el g (26)

Pelle

K1 = (2/30:%) 3 (pe/ poue)*’? (27)

Relation between Surface Mass Transfer, Heat
Transfer, and Temperature

Mass and heat transfer at the surface can be related to
temperature in a form similar to Egs. (25) and (26) by apply-
ing the same method of solution to the integral energy equa-
tion. Although thermal diffusion has a significant influence
on the solution to the energy equation, the effect enters in
such a way that, as later remarks will clarify, it can be ig-
nored for the present; the corresponding integral energy
equation is

d ® U _
de {Peue j‘O Pelhe (hOZ - ILO)dy} -

S (%> + (o0)ulhos — he) +

Pr, \ 0y

()l = €10)(Cpre — 1) % <%E - 1) (28)

Although sometimes used, this form of the equation is not
the most convenient for the present work. Owing to the
dependence of C, on composition, the differential of enthalpy
isgiven by

dh = CdT - CpoCpia — 1)Tdey (29)

with C,1; = C,1/Cpe.  After using Eq. (29) and the integral
concentration equation, one can write Eq. (28) in the form

d @ pu -
@%%ﬁ»@ﬂﬂh“ﬂw}‘

oT
<K 55) F ()uCo(Toe — Tu) (30)

Thus, the heat flux to the surface, (k0T /0y)., is separated
explicitly from the energy transport by diffusion and con-
vection. An additional advantage of Eq. (30) is that the
integral contains the temperature difference rather than the
enthalpy difference from the freestream value. Whereas
stagnation values arise rather naturally in the integral
energy equation (28), the numerical solutions are obtained
more easily for static temperatures, so that further argument
is necessary if one is to use tabulated numerical results di-
rectly as an aid to solution of Eq. (30). It can be shown?, 2
that, if variations in A, C,, the Prandtl number Pr, and the
Schmidt number Sc¢ with temperature are much smaller
than variations with concentration, then one can superpose
solutions (for temperature) to the differential energy equa-
tion. This implies, in particular, that as in homogeneous
flows, the “temperature potential”’ in high speed flow must
be measured from the adiabatic wall temperature, To,. It
follows further?® that one can obtain the solution for heat
transfer in high speed flow from the result for low speed flow
simply by substituting the proper temperature potential.
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It is sufficient, then, to solve the integral equation (30) in
(z,m) ccordinates for low speed flow, T. and T replacing
To.and Tyin Eq. (30):

d © U
%{Ma I} D (T~ T)dy} -

(+57), + GmCatr. = 7 (30
Y /) w

Then, in the final results for heat transfer, the temperature
potential T, — T. is to be replaced by Tw — Te.w, where
Taw is known from the similarity solutions or from experi-
ments; no attempt will be made to determine the particular
solution T, The appropriate values to use for T, are best
determined separately for each problem considered and are
set by the obvious requirement that 7', = T when (OT/0y)
vanishes under the conditions supposed. If, on the other
hand, thermal diffusion is not neglected, (07/0y). is coupled
to T, through the mass transfer ratel, 3 even when T, =
Taw. This appears to be the most important influence of
thermal diffusion; its effect on the normalized heat transfer,
in the form of the Stanton number, seems to be very small.3!
Hence, neglect of thermal diffusion to obtain the integral
equations may not be a serious defect, providing the proper
adiabatic wall temperature can be incorporated in the final
results. This is not a trivial matter, since 7. is rather
strongly dependent on mass transfer rate as well as Mach
number. The corresponding complication is absent from
heat transfer problems nct involving mass transfer but with
variable pressure, for then 7., can be assumed with good
accuracy to be independent of variations in pressure.

Now consider Eq. (31) when (07/0y). # 0 and for an iso-
thermal wall along which ¢;,, 1s constant; it then is permissible
to divide the equation by C,.(T. — T.) to obtain

Ko 1 oT

d _Be 10T Con [
e (petbe) = Pro T —T. <by>w + Con (o) (32)

where now

(e G (T-T.
6‘ h ‘[‘0 Pole pr <Tw - Te dy (33)
Define a thermal thickness by
_ = oG (T =T,
= |, peCo <Tw - T,> 4 (34)

in which the ratio pC,/p.Cpo appears because both p and
C, vary through the boundary layer. After inserting Hq.
(9) for (pv),, the equation can be put in a normalized form as

(d/dx){peud]) = Cu N W/0A (35)
with the definiticns analogous to quantities introduced before:

Bc MeaT
J_H A—C)\wuwg

_ 1 BT’ aT Crw
W= Pr, T, ~ T, (by>w+ 1 — ¢ X

Co/Cou 0 O£>
Scw Clw < ay w (37)

(36)

The group of terms A, W corresponds to n in Eq. (16) and is
a function of ¢, only; for the special conditions ¢, and T
both constant, it can be evaluated from the numetrical results
of Ref. 1. Figure 6 shows the more useful quantity
Cpe  (NV)23

$ = ¢ Qapaly)l® (38)

where a; = 2.59 in the approximation J = as AV% It fol-
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lows from previous remarks? that the numerical results of
Ref. 1 may be used to compute a family of J-A curves for
the integral energy equation; Fig. 7 shows these results for
helium injection. Eventually, one can deduce the formula

/3 1/272/3 ®
0= (o) B L wrrgme] = @
if the family in Fig. 7 is approximated by J = a4, A2 and

with
T = (Tow — Tw)Cru(NW)23/T M3

Q.. is an abbreviation for (see Ref. 28)
Quw = qu + 3Cngpeue(C/R)V*(Taw — Tw) (40)
where ¢q, = [¢(0T/0y)]. In accord with previous discus-
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sion, the correct temperature potential, Taw — T, has been
inserted for T, — T, so that Eq. (39) holds for Me = 0.
When (pv),, = 0 locally, one must® take Q. = gu.

Equation (39) is a linear relation between @, and T; when
variations in 6,/Ty with ¢, are ignored, the multiplier of Z
is a function of z only. One can show also that the differ-
ential equation (35) is a linear relation between @, and 2,
so that, by superposition, an expression for @, valid for vari-
able surface concentration and temperature may be con-
structed: »

_ (2 \¥® [udpan) 210
9. = (3%2) @/To %

z z C’ —1/3 dz
S, Uz @/T d"} a %

It should be noted that T, in 2 is a local value and varies
with wall concentration in a manner to be discussed later.
To be consistent with the viewpoint taken here, it is assumed
that, just as for g(ci»), the dependence of Z on ¢, as deter-
mined from special numerical results remains the same
irrespective of the distributions of ¢, and Tew — T along
the surface. Onee again, only subsequent comparison with
numerical results and experimental data can justify this
assumption. ]

The first check of this formula is comparison with the heat
transfer computed by Baron. From Eqgs. (40) and (41) with
2 constant, the normalized heat transfer (Stanton number) is

Juw
St=-—' 9
PeUesz(Taw et Tw)

2 \*3 [ cu. \¥3 ¢ z  dp |TUs
() Gi)” o L o] -

1C, O\ 2

207 <Rx> “42)
Since /T is given by the expression (22), the Stanton num-
ber is finally

St(Rz/C)? = ¢ — 3(Cha/Coo)g (43)
This reduces to the correct value for no mass transfer if
@ = 2w/a® = 2.59 (44)

where w = 0.571 is the value of W when ¢1, = fo» = 0 every-
where and has been encountered previously in Hill’s analysis.
Note that this value of a, also permits J = a, AY2 to be a
good approximation to the J-A family in Fig. 7. Equation
(43) with ¢ taken from Fig. 6 is shown in Fig. 8 with the exact
values of Ref. 1; in this particular case, of course, ¢ and —f,
are interchangeable.

Evidently, then, replacement of 7', by T, in the tempera-
ture potential does account for the changes in adiabatic wall
temperature due to both Mach number and mass transfer,
as earlier argument showed. The present method will yield
no information concerning the temperature of a surface
that is insulated over its entire length. The importance of
the results obtained here resides in the possibility of carrying
out caleculations of heat transfer and wall temperatures under
conditions that are not treated easily by numerical solution
to the differential equations.

Several interesting features of Eq. (43) should be noted.
The term denoted by ¢ is related to the amount of energy
“convected” within the boundary layer; this is increased by
mass transfer (cf., Fig. 6) because energy losses to the surface
thereby are reduced and because there is some enthalpy
addition associated with the mass transferred through the
surface. However, so far as surface heat transfer is con-
cerned, the increased energy content of the boundary layer
is more than balanced by convection and diffusion away
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Fig. 9 Comparison of approximate result with numerical
solution and experimental data for upstream cooling with
no surface mass transfer

from the surface represented by the second term in Eq.
(43). Not only is the latter influence proportional to the
mass transfer rate (recall that, locally, g = —f, ~ (pv)» for
the similarity conditions), but the importance of using an
injected gas having a high specific heat also is indicated
clearly. In consequence of the two opposing effects shown
in Eq. (43), the temperature gradient at the surface, and
hence ¢, is reduced by mass transfer.

Equation (41) can be solved for = according to the Ap-
pendix, and one finally has the two relations corresponding
to Eqs. (25) and (26):

@ = % /. [fs (_0%7]—, 3—? . (45)
S — Sw) = sir:;r/3 f; [f: %ﬁ]ms 0dE (46

2 1/3
= ()" ludoangreps (a7)
3as

Q. is given by Eq. (40) and Z = Cpp(Taw — Tw)(A,W)2/3/
T'4/%.  These formulas contain, as a special case, Hill’s result!*
for heat transfer to a flat plate with nonuniform surface
temperature and no mass transfer.

In summary, the formulas deduced here for problems in-
volving simultaneous heat and mass transfer are to be used
in the following manner:

1) Suppose (pv), is given as a function of z; then Eq.
(5) is used to compute f.(z), and by using either Fig. 2 or
Eq. (7), the momentum thickness 8 is calculated from Eq.
(6). Here, and in some later steps, it may be necessary to
use an estimated average value for C, found from Fig. 1.

2) The function g(x) is calculated from Eq. (26), and the
distribution of wall concentration then is read off Fig. 6.

3) If the surface temperature is specified, Eqs. (45) and
(40) give the surface heat transfer ¢., and if ¢, is specified,
the surface temperature can be calculated from Fq. (46).
The results of step 2 and Fig. 6 are required here; the de-
pendence of Ty, 00 €14 18 treated in the next section. In par-
ticular, note again that Q. = ¢. wherever (o)., vanishes;
otherwise Eq. (40) holds.

Application to Discontinuous Distributions
of Surface Mass Transfer

The first problem concerns the influence of a solid tip.
For structural reasons, there always must be a finite solid
region at the leading edge. Consider the distribution with

0<a<L

Jwe constant:
0
Jo= {fm x> L

Note that (pv). is finite at £ = L; the ‘“singularity” is still
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at z = 0 [(pv)» ~ z~V2], which lies outside the mass transfer
region. Even though f., is constant downstream of 2z = L,
1w 18 not; the problem is to compute the growth of ¢, up
to its value ¢, associated with f,. under similarity conditions.
It follows from Eq. (6) that the momentum thickness is given

by
0 (C'ua 1/2 xll2
- ;22) To(l + )12
With some approximations that are valid for ¢, — 0, in
particular [; « z, £, one finds? from Eq. (26)

0<z<L
x> L

g(cl_w) _ Esimr/?) fx d€ (48)

—fum 4 7 L EUR(g — gainyes

and with the transformation { = (£/x)%¢

g(erw)/ —fow = 1 — x(2/L) (49)

x _ sin7r/3 (L/x)sl4 _____d_§—
X <Z) T oor fo (1 — ) (50)

The function x, an incomplete beta function, has been
encountered previously in a calculation of the distribution
of adiabatic wall temperature downstream of a cooled lead-
ing edge.?® It can be evaluated by expanding the integrand
about { = 0 and ¢ = 1 and also has been tabulated, apart
from a constant multiplier, in Ref. 30. Figure 9 shows x,
and in Fig. 10 the result Eq. (49) is compared, by using Fig. 5,
with the numerical result of Ref. 4. Agreement seems to be
aceeptable in the range for which numerical calculations have
been carried out. Owing to the approximations made here,
the expression 1 — x quite likely lies below the true result
for larger values of z/L.

A much more useful solution can be obtained for the up-
stream cooling problem, for which there appears to be no
numerical solution available in the case of a binary mixture.
(The numerical procedure of Ref. 4 can be used to solve this
problem.) Suppese that the distribution of f, is

_ wa
e

Equation (26) eventually yields

x> L
g sinw/3 [ (L/x)3s d&
- B e m =« (3) o

—fuL T
Thus, by using Fig. 5, the distribution of ¢, for /L > 1 can
be found easily.

The simplest idealized form of the upstream cooling prob-
lem consists in determining the temperature of an insulated
(qw = 0) impermeable surface downstream of a porous re-
gion in which the similarity conditions are met. However,

where

0<z< L

1.0

Crw

< Approximate result, ¢, =06
iw

O Exact solution {ref. 4) ¢,=0.6

(o]
n

Fig. 10 Variation of ci»/c1, over injection region down-
stream of a solid leading edge (flat plate)



790 F. E. C. CULICK

.00 N
Air: O =-04

Helium: OO f =-0.4, & f =-06
96 —

Approximate distribution for
nonuniform temperature correction

92 (B=3/4)
T e Fig. 11 Experimen-
Toe o tal surface temp-

0 erature in porous
84 — End of injection region of cone®
region (x/L=1)
80 ~
7 L
0 2 4 & 8 10 12

when measurements are taken, two violations cf these re-
quirements are difficult to avoid: there is a solid leading
edge so that f, = 0 for some distance near z = 0, and, be-
cause cooling therefore is not present in this region, the tem-
perature tends to be nonuniform. The first departure from
the ideal situation will be neglected for the present, but a
correction for nonuniform temperature is included. A
simple approximation to the actual conditions for 0 <z < L
is then (see Fig. 11)

A fwr 0<e <L
fo = x> L
AT{1 — (x/L)¢}  0<z<L
Te=T:+ { Li<z <L
Equations (45) and (46) lead to
Tw ~ Taw _ o1 AT
- aw R (V. 52
¢ L - TawL ¢ {X + - TawL (X T) ( )

where 7 is a function that can be evaluated® in much the
same way as x, and T,z is the adiabatic wall temperature
in the porous region.

Within the approximations used here, ¢ is independent of
temperature level and varies with f.z (and, of course, z/L).
Unfortunately, this is not a convenient quantity to compare
with experimental results, since the adiabatic wall tempera-
tures, Tuwz and To.., have been quite difficult to measure
accurately. A detailed discussion and comparison of theo-
retical and experimental values of adiabatic wall tempera-
tures is given in Ref. 31; it is shown that there is perhaps
some reason to question the accuracy (or interpretation) of
measured values. Of course it is possible in prineciple to
measure both Ts,z and Te,, in Eq. (52), since, when guz = 0
for all z, then Ty = Tuur and To, = T, the resulting values
then could be used in Eq. (52) when ¢, == 0. In view of the
doubts just mentioned, however, it seems best at present to
compute T, from Eq. (52), and hence only measurements of
surface temperature when ¢, = 0 will be required for
cemparison.

It is still necessary to know Tewr and Ta., which, according
to earlier remarks, cannot be computed by the present
method. Hence one must treat the adiabatic wall tempera-
ture, cr equivalently the recovery factor r, in the same way as
¢ was handled before. For a consistent treatment, the
values of r computed in Ref. 1, neglecting thermal diffusion,
should be used here, since the analysis depends in part on a
linear energy equation. There is, however, a significant
error between the results of Ref. 1 and measurements.
More recent calculations®' accounting for thermal diffusion
show that the error between theory and experiment is still
significant but of opposite sign. Both theoretical results
and four sets of experimental points32 3~% are shown in Fig. 12.
The caleulations including thermal diffusion are to be pre-
ferred, since the erorr appears to be associated with inter-
pretation of the conditions actually existing in the experi-
ments; the difference between the data and the results when
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.thermal diffusion is neglected a,pparently cannot be ex-

plained so easily.3!

Accordingly, the relationship between r a,nd ¢1» used here
is based on the results of Ref. 31 and is given in Fig. 6.
Thermal diffusion has little influence on the variations of St
and ¢, with f., so that the approximate results obtained from
the energy equation will be modified only in the temperature
potential T, — Tay It is assumed, as for ¢, that the de-
pendence shown in Fig. 6 holds for any T, and ¢, distribu-
tions.

All quantities in Eqs. (52) and (51) now are known; the
distributions of » and ¢ with z/L are found from Figs. 5 and
6. A comparison with the measurements of Ref. 33 for three
experimental conditicns is shown in Fig. 13. The tempera-
ture 7'z, is that measured at a thermocouple immediately up-
stream of the end of the injection region. It happens for
the cases computed that x — 7 < 0.03 always. The dashed
line for the case fur, = —0.6, Tz/To. = 0.791 includes both a
correction for nonuniform temperature and adjustment to
account for the fact noted previously, that g(c.) in Fig. 5
deviates from the correct values computed in Ref. 1 for large
¢iw. Thus the dashed line in Fig. 13 for fz = —0.6 is based
on the dashed line in Fig. 5. This correction, which affects
prineipally ¢z, ¢z, and Tz, is negative and of larger magni-
tude than the correction for nonuniform surface temperature,
so that the corrected curve lies below the uncerrected result.

The calculated surface temperatures seem to agree satis-
factorily with the measurements for the three cases shown.T
A discussion of the expected experimental accuracy may be
found in Ref. 33. Note that greater error in the computed

.90
00 Ref.33.f = -04, Me=3.25
=-—— Gorrected for nonuniform J o
86 — temperature and fig. & 500 o))
]
T o 000 000002
w g0l
Toe o
82 +— T/ Toe = 0.853
0. a3 N
=T, [ Toe = 0.795
78 Lol ‘
.84
& Ref33] fL=-08, Me=3.25, T /Toe=0.791 R
A%
——— Gorrected for nonuniform o ab
Tw temperature and fig. 6 ad
- 80 o a088d
76 L | Lo Ll
Ol A | 10

Fig. 13 Comparison of approximate results and experi-
mental data for upstream cooling problem: helium
injection

1 Since the measurements were made on a cone, the Mangler
transformation has been used to reduce them to the correspond-
ing flat plate values shown in Fig. 12.
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results must be expected for f, = —0.6, since the solutions! 10 JA—
on which this analysis is based do not extend to values of f, & Ref. 35
this large; as the mass transfer rate becomes large, (Ou/ 2 O Ref. 37

dy)w — 0, and separation is predicted by the numerical
results.

A correction for the solid tip on the cone should be in-
cluded, but to do so accurately requires considerably more
labor than seems worthwhile at present. The reason is that
the calculation carried out previously for Fig. 10 must be
done accurately for a distance in the porous region nine times
the length of the solid tip (i.e., the porous region on the cone
used in the experiments was nine times the length of the
solid tip). This will lead to rather lengthy calculations, for
the sole purpose of obtaining the value ¢,z of ¢, at the down-
stream end of the porous region; the values of ¢, for /L > 1
can be obtained easily. One can estimate ¢,z and thereby
determine that the consequent correction to the curves in
Fig. 13 certainly will not exceed the evident difference be-
tween experiment and the approximate results. Hence,
tentatively, one might regard the disagreement between
experiment and (approximate) theory shown here as a re-
flection of the effect of the solid tip. Note that the influence
seerns to be relatively greater for the larger f.z, as one might
expect.

The assumption that ¢ and r are the same functions of
¢1w for z > L, where f,, = 0, as for f,, constant therefore ap-
parently is supported. Additionally, the present results
contribute some evidence favoring the argument in Ref. 31
that thermal diffusion may have substantial influence on re-
covery temperatures when helium is injected into air. In
the problem considered here, the r — ¢, relationship of
Fig. 6 (i.e., thermal diffusion included) has the trend neces-
sary for theoretical prediction of an apparently peculiar be-
havior downstream of the injection region: the surface
temperature actually decreases before increasing eventually
toward the adiabatic wall temperature associated with ¢, =
0 at ¥ — .} This initial reduction in 7, evidently is
associated with the decrease in T\, as ¢y, decreases down-
stream of z = I, for T, is the surface temperature when ¢,, =
0 for all 2, and the difference between T, and T4, for z > L is
roughly proportional to ¢. (i.e., the energy added to the
boundary layer) in the cooled region. Consequently, the
behavior of Te, for & > L should be reflected in 7., as the
measurements have shown.

Some Results for Air Injection

The results presented so far can be specialized to the case
of air injection, but there are several interesting difficulties.
A formula similar to Eq. (22) holds for the momentum thick-
ness; since A, = 1 for air, the Stanton number for similarity
conditions becomes, as a special case of Eq. (43),

Rz\v2 W, 1 1
S <7> = Gatalgs T gl =t 5 fe 63
o1 |
FlO - Cfo o fw

where subseript @ denotes air injection. The numerical solu-
tions of Refs. 1 and 3 can be used for air injection in the same
way that the results of Ref. 1 formed the basis for helium
injection. For g, = 2.59, Eq. (53) is more inaccurate the
larger is f,. 'The reason for this can be seen in Fig. 7. It is
clear that the assumpticn A = 2.59J12 J = a, A2 is not

I The behavior seen here is for 7, < (Tow)e; if (Ton)e <
T',, then the surface temperature would decrease monotonically
from T, to (T,,)x, although there are no measurements taken
under the proper conditions to show this. For air injection,
when thermal diffusion is absent, the initial decrease is not ob-
served (see Fig. 16).

Fig. 14 Variations of

recovery factor with

mass transfer rate for
air injection®

RECOVERY FACTOR, r

¢] J .2 3 4 5 8
INJECTION RATE PARAMETER, -f,

a good approximation to the J-A family for air injection,
and the error obviously is greater for larger values of f,.
This does not mean that the method of solution will not work;
it does mean that the approximation is representative only
over narrow ranges of f,. The value of a, can be adjusted
to match the range of f, in a particular preblem, but if the
range is large, then J = a, AY?is a poor choice, and Eq. (35)
should be integrated in steps, using the J-A family of curves.
Thus the simplest form of the J-A relationship is in a sense
fortuitous and depends on the circumstance that the simi-
larity solutions lie close to the line A = ay JV? or, more gen-
erally, A = a./¢, wheree > 0.

It is interesting, however, that Eq. (52) is independent of
a»; hence the difficulty just mentioned apparently is irrele-
vent, and one might expect to obtain reasonable results for
air injection in the upstream cooling problem. Equation
(52) then becomes, if one ignores the correction for nonuni-
form surface temperature,

Tw - Tau; ¢aL X
TL - TawL ¢a X (L> (54)
from which the surface temperature may be calculated.

Since there is only a single gas, thermal diffusion is not an
issue; correspondingly, the theoretical prediction for the re-
covery factor agrees very well with measurements, as Fig.
14 taken from Ref. 31 shows, and 7', certainly can be calcu-
lated accurately. However, a difficulty of a different sort
arises because now the term “wall concentration” has doubt-
ful meaning. In the calculations for helium injecticn, ¢y,
was very important, since it served essentially as a parameter
identifying (by assumption) the values of r and ¢ at a par-
ticular position 2/L > 1. Without ¢, there is no obvious
way of connecting the values of r and ¢., computed from the
similarity solutions, with the values required in Eq. (54).

Therefore, in the absence of an alternative, it will be sup-
posed here that, even with air injection into an air boundary
layer, one can identify a quantity called the concentration
of injected gas. This amounts to attaching some special
significance to the particles that have been injected through
the surface. Although evidently it is not consistent with
ideas regarding the indistinguishability of identical molecules.
this is a formal artifice that seems to be quite effective fo
present purposes.”® The results are shown in Fig. 15.

Figure 16 shows a comparison of the approximate result fo:
T. with experimental data reported in Ref. 33 and with some
numerical results of Ref. 5. These twe cases offer a particu
larly good contrast, since the experimental data are for ¢
nearly insulated condition over the porous region, wherea:
the numerical result involves a larger heat transfer rate a
well as different mass transfer rate and freestream Macl
number.

The function x(x/L) is exactly the ratio (Tw — T..
(Ty — T.w) downstream of a cooled (or heated) region o
uniform temperature but with no mass transfer. To com
plete this discussion, Fig. 9 is included, showing an interestin,
comparison that so far as the author is aware has not ap
peared elsewhere. Durgin® previously has shown the goo
agreement between his data and x, but at that time the nu
merical calculations of Ref. 5 were not available. Sinc
tabulated results were not at hand when Fig. 9 was drawr
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Fig. 16 Comparison of approximate results with numeri-
cal solution and experimental data for upstream cooling
problem with air injection

there are likely some inaccuracies arising from reading curves,
but the obvious agreement between the three sources certainly
is true. The approximate result (i.e., x) also can be ob-
tained from Lighthill’s formula,?? from the work of Rubesin,3*
and of course from Hill’s investigations.

Concluding Remarks

There is little questicn that the present results, based in
large part on ideas due to Thwaites and Rott and Crabtree,
are useful for helium and air injection. Extension to other
situations seems largely a matter of obtaining the appro-
priate numerical solutions, at least for dp/dx > 0. Prob-
lems in which dp/dz = 0 lead to additional difficulties of two
sorts: the momentum equation has added term, and the
momentum thickness can be zero or negative.

It must be emphasized that the calculations depend on
certain assumptions that can be justified only by the apparent
correctness of the approximate results. The method leads
only to formulas useful in calculating practically interesting
quantities under relatively general conditions. This ‘recipe”
is not to be confused with a “theory” of the boundary layer.

Appendix

Consider the integral equation for g:

F(z) = fa [f; h(xl)dxl]_ T d

where F'(z) = 0 for # < a and A is a known function.

ter Multi-
piy by )
[ f v h(xl)dxl:lﬁ—

1
h(z)dx

ATIAA JOURNAL

and integrate over ¢ < z < y:

[ s " wras = 770 [T han]"T x
hdz L e [ fé ‘ hdxl] ng dt

Inversion of the crder of integration on the right-hand side

gives
[ Z-‘é i [ [f: ] [Lxhdxlj—ﬂ de
Now set
f h dx,
f h dz,
so that

h(z)dr = dz fsyh dz,

f:hdxl= (l—z)f:hdxl

Making these substitutions in the integral over x gives

j;l 2 Pl —2)fldz =

g
sinfr

and the desired inversion follows directly:
-1 )
o) = gto=) = TET [71 [Zan [ oo

This is the solution to the given integral equation for any
integrable function A. Tribus and Klein® previously have
shown this to hold for A ~ z.
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